Formation of Vanadium Antimonate and Low Temperature Stabilisation of β-Sb₂O₄ by Vanadium

Frank J. Berry,^{*a} Michael E. Brett,^a and William R. Patterson^b

^a*Department of Chemistry, University of Birmingham, Birmingham B 15 2TT, U.K. ^b Imperial Chemical Industries PLC, Corporate Laboratory, Runcorn, Cheshire, U.K.*

The formation of hitherto disputed monophasic vanadium antimonate is reported and its thermally induced decomposition into β -Sb₂O₄ containing *ca*. 5% vanadium is associated with a new low-temperature stabilisation of this phase; on further heating the hexagonal ' β -Sb₂O₄' plate-type crystals develop crystalline outgrowths of vanadium antimonate.

The preparation of a compound with formula $V\text{SbO}_4$ from the solid state reaction between antimony (n) oxide and $vanadium(v)$ oxide has been the subject of considerable uncertainty¹⁻⁵ and doubt has recently⁵ been cast on the formation of monophasic vanadium antimonate.

We have prepared monophasic vanadium antimonate by slowly and carefully heating intimately ground equimolar mixtures of the reactants to 750 °C in a flow of dry nitrogen from which oxygen has been removed by manganese(II) oxide $\left(\langle \cos 1 \right)$ part in $10^{9.5}$).⁶ X-Ray diffraction and electron microscopy studies showed the absence of antimony tetroxide in the product which gave an X -ray diffraction pattern characteristic of a tetragonal rutile-type material with cell parameters $a = b = 4.600 \pm 0.004$, $c = 3.078 \pm 0.004$ Å. The reaction was accompanied by the sublimation of white crystalline cubic $antimony (III)$ oxide suggesting that although monophasic the vanadium antimonate may nevertheless be non-stoicheiometric and correspond to the formulation $VSB_{1-y}O_{4-3/2y}$ $(0 < y < 0.1)$. Preparations under identical conditions but without the removal of residual oxygen from the nitrogen by $magnese(II)$ oxide gave biphasic products consisting of rutile-type vanadium antimonate and α -Sb₂O₄. Above 800 °C

 α

the Sb_2O_4 was formed as the β -polymorph. The quantity of antimony tetroxide formed in these products exceeded that which might reasonably be attributed to the oxidation of reactant antimony(III) oxide by residual molecular oxygen in the impure nitrogen flow gas. We suggest that initial oxidation of antimony(III) oxide by the residual oxygen gives α -Sb₂O₄ which liberates oxygen from vanadium (v) oxide by a similar mechanism to that which has been suggested for the reaction between vanadium(v) oxide and metal oxides.^{$7-9$} Hence further oxidation of unchanged antimony(π) oxide gives rise to larger amounts of Sb_2O_4 in products which show minimum weight gain. Reactions of antimony(III) oxide and vanadium(v) oxide in air gave single phase homogeneous oxidised products. We have been unable to confirm the existence³ of a compound of formula $V_2Sb_2O_9$. We suggest that the method by which monophasic vanadium antimonate is prepared may be suitable for the synthesis of similar compounds with related structures which are not usually formed¹⁰ without an oxide impurity.

The biphasic product containing vanadium antimonate and α -Sb₂O₄ gave, when heated to 900 °C and slowly cooled, a fused product supporting crystals with cell parameters $a =$

Figure 1. Outgrowths from ' β -Sb₂O₄' (a) formed by thermal decomposition of vanadium antimonate with subsequent heating at 670 °C (27 h) (Scale bar = 10 μ m); (b) following reaction with vanadium(v) oxide at 650 ° 800 °C (15 h), and 820 °C (18.5 h) (Scale bar = 10 μ m).

12.1, $b = 4.8$, and $c = 5.4$ Å, similar to those reported¹¹ for β -Sb₂O₄. The formation of β -Sb₂O₄ under these conditions, and from reactions between vanadium(v) oxide and either antimony(III) oxide or α -Sb₂O₄ in impure nitrogen at temperatures exceeding 800 "C, is unexpected since direct oxidation of antimony(III) oxide produces^{12,13} α -Sb₂O₄ which is converted into the β -form at 1130 °C.¹¹ Further reactions between antimony(III) oxide and vanadium(v) oxide with V: Sb ratios between 1 : 18 and 1 : 100 gave black products containing large hexagonal plate-type crystals which X-ray diffraction showed to be β -Sb₂O₄. Reaction mixtures with vanadium contents outside these limits gave biphasic products in which the β -Sb₂O₄ was accompanied by rutile-type vanadium antimonate in vanadium rich reactions or α -Sb₂O₄ in vanadium deficient systems. Chemical analysis of the β -Sb₂O₄ plates by electron probe microanalysis revealed the presence of up to *ca.* 5% vanadium. We therefore propose that the ' β -Sb₂O₄' phase is more accurately described as a solid solution of vanadium in β -Sb₂O₄ and that the vanadium facilitates and stabilises the low temperature formation of β -Sb₂O₄.

It is to be expected that the low temperature transformation of α - to ' β -Sb₂O₄' occurs by a different mechanism from that which has been proposed¹¹ for the isomerisation of pure α -Sb₂O₄ at 1130 °C. In this respect it is significant that calcination of monophasic vanadium antimonate at $810\degree$ C (11 h) also gave the formation of the ' β -Sb₂O₄' crystals which on subsequent heating at 670 °C (27 h), or at higher temperatures, developed [Figure $1(a)$] crystalline outgrowths from the hexagonal faces in materials shown by X -ray diffraction to contain vanadium antimonate, β -Sb₂O₄ and a small amount of vanadium(v) oxide. Electron probe microanalysis showed the outgrowths to contain approximately equal proportions of antimony and vanadium as might be expected from a vanadium antimonate phase. Similar products [Figure I(b)] were obtained when mixtures of β -Sb₂O₄ containing 5% vanadium and vanadium(v) oxide corresponding to the overall stoicheiometry $VSD₄$ were heated at 650 °C (13 h) and then thermally worked up. The detection by X-ray diffraction of both β -Sb₂O₄ and vanadium antimonate in these materials is indicative of an outgrowth of vanadium antimonate resulting from the reaction of vanadium(v) oxide with the hexagonal β -Sb₂O₄' platelet faces. It is not unreasonable therefore to suggest that the outgrowth formed on the ' β -Sb₂O₄,' generated by calcination of monophasic vanadium antimonate, is derived in a similar fashion. We therefore propose that calcination induces the decomposition of vanadium antimonate into vanadium(v) oxide and α -Sb₂O₄ and that further reaction occurs in which some vanadium from the vanadium(v) oxide dissolves in the α -Sb₂O₄ lattice with concurrent isomerisation to the β -form. Thereafter the remaining vanadium(v) oxide slowly recombines with the β -Sb₂O₄ losing oxygen to yield an outgrowth of vanadium antimonate. In view of the mobility which has been attributed¹⁴ to antimony in other rutile-type structures it appears reasonable to suggest that the migration of such species to surface sites and their nucleation to form macroscopically distinguishable phases is a more common consequence of thermolysis of these structures than is generally realised.

We thank the S.E.R.C. for **a** studentship (M. E. B.).

Received, 25th March 1982; Corn. 345

References

- ¹L. W. Vernon and W. 0. Milligan, *Tex. J. Sci.,* 1951, 82.
- 2 R. S. Roth and J. L. Waring, *Am. Mineral.,* 1963, **48,** 1348.
- 3 R. Renaud, *Rev. Chim. Miner.,* 1971, **8,** 633,
- 4 H. Schuer and W. Klemm, *Z. Anorg. AIlg. Chem.,* 1973, **395,** 287.
- *5* **T.** Birchall and **A.** W. Sleight, *fnorg. Chern.,* 1976, **15,** 868.
- 6 C. R. McIlwrick and C. **S.** G. Phillips, *f. Phys. E.,* 1973, **6,** 1208.
- 7 **A.** Vejux and P. Courtine, *J. Solid State Cheiii.,* 1978, **23,** 93.
- 8 **J.** G. Eon and P. Courtine, *J. Solid State Chenz.,* 1980, **32,** 67.
- 9 D. J. Cole, C. F. Cullis, and D. J. Hucknall, *J. Chem. Soc., Faraday Trans.* **1,** 1976, **72,** 21 85.
- 10 J. **B.** Wooten, G. G. Long, and **L.** H. Bowen, *J. fnorg. Nucl. Chem.,* 1974, **36,** 2177.
- 11 D. Rogers and **A.** C. Skapski, *Proc. Chem. Soc., London,* 1964, 400.
- 12 I. P. Olenkova and **L.** M. Plysova, *J. Struct. Chern. (Engl. Transl.),* 1978, **19,** 887.
- 13 P. **S.** Gopalakrishnan and H. Manohar, *J. Solid State Chern.,* 1976, **16,** 301.
- **14 D.** Pyke, R. Reid and R. J. D. Tilley, *J. Chern. Soc., Farnday Trans.* 1, 1980, 1174.